Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Effects of twice-ambient carbon dioxide and nitrogen amendment on biomass, nutrient contents and carbon costs of Norway spruce seedlings as influenced by mycorrhization with Piloderma croceum and Tomentellopsis submollis.

Identifieur interne : 002435 ( Main/Exploration ); précédent : 002434; suivant : 002436

Effects of twice-ambient carbon dioxide and nitrogen amendment on biomass, nutrient contents and carbon costs of Norway spruce seedlings as influenced by mycorrhization with Piloderma croceum and Tomentellopsis submollis.

Auteurs : Rosemarie Barbara Weigt [Allemagne] ; Stefan Raidl [Allemagne] ; Rita Verma [Allemagne] ; Hermann Rodenkirchen [Allemagne] ; Axel Göttlein [Allemagne] ; Reinhard Agerer [Allemagne]

Source :

RBID : pubmed:21107870

Descripteurs français

English descriptors

Abstract

Elevated tropospheric CO(2) concentrations may increase plant carbon fixation. In ectomycorrhizal trees, a considerable portion of the synthesized carbohydrates can be used to support the mutualistic fungal root partner which in turn can benefit the tree by increased nutrient supply. In this study, Norway spruce seedlings were inoculated with either Piloderma croceum (medium distance "fringe" exploration type) or Tomentellopsis submollis (medium distance "smooth" exploration type). We studied the impact of either species regarding fungal biomass production, seedling biomass, nutrient status and nutrient use efficiency in rhizotrons under ambient and twice-ambient CO(2) concentrations. A subset was amended with ammonium nitrate to prevent nitrogen imbalances expected under growth promotion by elevated CO(2). The two fungal species exhibited considerably different influences on growth, biomass allocation as well as nutrient uptake of spruce seedlings. P. croceum increased nutrient supply and promoted plant growth more strongly than T. submollis despite considerably higher carbon costs. In contrast, seedlings with T. submollis showed higher nutrient use efficiency, i.e. produced plant biomass per received unit of nutrient, particularly for P, K and Mg, thereby promoting shoot growth and reducing the root/shoot ratio. Under the given low soil nutrient availability, P. croceum proved to be a more favourable fungal partner for seedling development than T. submollis. Additionally, plant internal allocation of nutrients was differently influenced by the two ECM fungal species, particularly evident for P in shoots and for Ca in roots. Despite slightly increased ECM length and biomass production, neither of the two species had increased its capacity of nutrient uptake in proportion to the rise of CO(2). This lead to imbalances in nutritional status with reduced nutrient concentrations, particularly in seedlings with P. croceum. The beneficial effect of P. croceum thus diminished, although the nutrient status of its host plants was still above that of plants with T. submollis. We conclude that the imbalances of nutrient status in response to elevated CO(2) at early stages of plant development are likely to prove particularly severe at nutrient-poor soils as the increased growth of ECM cannot cover the enhanced nutrient demand. Hyphal length and biomass per unit of ectomycorrhizal length as determined for the first time for P. croceum amounted to 6.9 m cm(-1) and 6.0 μg cm(-1), respectively, across all treatments.

DOI: 10.1007/s00572-010-0343-1
PubMed: 21107870


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Effects of twice-ambient carbon dioxide and nitrogen amendment on biomass, nutrient contents and carbon costs of Norway spruce seedlings as influenced by mycorrhization with Piloderma croceum and Tomentellopsis submollis.</title>
<author>
<name sortKey="Weigt, Rosemarie Barbara" sort="Weigt, Rosemarie Barbara" uniqKey="Weigt R" first="Rosemarie Barbara" last="Weigt">Rosemarie Barbara Weigt</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biology I and GeoBio-Center (LMU), Division of Organismic Biology: Mycology, Ludwig-Maximilians-Universität München, Menzinger Str. 67, 80638, Munich, Germany. weigt@wzw.tum.de.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Biology I and GeoBio-Center (LMU), Division of Organismic Biology: Mycology, Ludwig-Maximilians-Universität München, Menzinger Str. 67, 80638, Munich</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bavière</region>
<region type="district" nuts="2">District de Haute-Bavière</region>
<settlement type="city">Munich</settlement>
</placeName>
<orgName type="university">Université Louis-et-Maximilien de Munich</orgName>
</affiliation>
</author>
<author>
<name sortKey="Raidl, Stefan" sort="Raidl, Stefan" uniqKey="Raidl S" first="Stefan" last="Raidl">Stefan Raidl</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biology I and GeoBio-Center (LMU), Division of Organismic Biology: Mycology, Ludwig-Maximilians-Universität München, Menzinger Str. 67, 80638, Munich, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Biology I and GeoBio-Center (LMU), Division of Organismic Biology: Mycology, Ludwig-Maximilians-Universität München, Menzinger Str. 67, 80638, Munich</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bavière</region>
<region type="district" nuts="2">District de Haute-Bavière</region>
<settlement type="city">Munich</settlement>
</placeName>
<orgName type="university">Université Louis-et-Maximilien de Munich</orgName>
</affiliation>
</author>
<author>
<name sortKey="Verma, Rita" sort="Verma, Rita" uniqKey="Verma R" first="Rita" last="Verma">Rita Verma</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biology I and GeoBio-Center (LMU), Division of Organismic Biology: Mycology, Ludwig-Maximilians-Universität München, Menzinger Str. 67, 80638, Munich, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Biology I and GeoBio-Center (LMU), Division of Organismic Biology: Mycology, Ludwig-Maximilians-Universität München, Menzinger Str. 67, 80638, Munich</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bavière</region>
<region type="district" nuts="2">District de Haute-Bavière</region>
<settlement type="city">Munich</settlement>
</placeName>
<orgName type="university">Université Louis-et-Maximilien de Munich</orgName>
</affiliation>
</author>
<author>
<name sortKey="Rodenkirchen, Hermann" sort="Rodenkirchen, Hermann" uniqKey="Rodenkirchen H" first="Hermann" last="Rodenkirchen">Hermann Rodenkirchen</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Ecology and Ecosystem Management, Forest Nutrition and Water Resources, Technische Universität München, Hans-Carl-von-Carlowitz-Platz 2, 85350, Freising, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Ecology and Ecosystem Management, Forest Nutrition and Water Resources, Technische Universität München, Hans-Carl-von-Carlowitz-Platz 2, 85350, Freising</wicri:regionArea>
<wicri:noRegion>85350, Freising</wicri:noRegion>
<orgName type="university">Université technique de Munich</orgName>
<placeName>
<settlement type="city">Munich</settlement>
<region type="land" nuts="1">Bavière</region>
<region type="district" nuts="2">District de Haute-Bavière</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gottlein, Axel" sort="Gottlein, Axel" uniqKey="Gottlein A" first="Axel" last="Göttlein">Axel Göttlein</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Ecology and Ecosystem Management, Forest Nutrition and Water Resources, Technische Universität München, Hans-Carl-von-Carlowitz-Platz 2, 85350, Freising, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Ecology and Ecosystem Management, Forest Nutrition and Water Resources, Technische Universität München, Hans-Carl-von-Carlowitz-Platz 2, 85350, Freising</wicri:regionArea>
<wicri:noRegion>85350, Freising</wicri:noRegion>
<orgName type="university">Université technique de Munich</orgName>
<placeName>
<settlement type="city">Munich</settlement>
<region type="land" nuts="1">Bavière</region>
<region type="district" nuts="2">District de Haute-Bavière</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Agerer, Reinhard" sort="Agerer, Reinhard" uniqKey="Agerer R" first="Reinhard" last="Agerer">Reinhard Agerer</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biology I and GeoBio-Center (LMU), Division of Organismic Biology: Mycology, Ludwig-Maximilians-Universität München, Menzinger Str. 67, 80638, Munich, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Biology I and GeoBio-Center (LMU), Division of Organismic Biology: Mycology, Ludwig-Maximilians-Universität München, Menzinger Str. 67, 80638, Munich</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bavière</region>
<region type="district" nuts="2">District de Haute-Bavière</region>
<settlement type="city">Munich</settlement>
</placeName>
<orgName type="university">Université Louis-et-Maximilien de Munich</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21107870</idno>
<idno type="pmid">21107870</idno>
<idno type="doi">10.1007/s00572-010-0343-1</idno>
<idno type="wicri:Area/Main/Corpus">002490</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002490</idno>
<idno type="wicri:Area/Main/Curation">002490</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002490</idno>
<idno type="wicri:Area/Main/Exploration">002490</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Effects of twice-ambient carbon dioxide and nitrogen amendment on biomass, nutrient contents and carbon costs of Norway spruce seedlings as influenced by mycorrhization with Piloderma croceum and Tomentellopsis submollis.</title>
<author>
<name sortKey="Weigt, Rosemarie Barbara" sort="Weigt, Rosemarie Barbara" uniqKey="Weigt R" first="Rosemarie Barbara" last="Weigt">Rosemarie Barbara Weigt</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biology I and GeoBio-Center (LMU), Division of Organismic Biology: Mycology, Ludwig-Maximilians-Universität München, Menzinger Str. 67, 80638, Munich, Germany. weigt@wzw.tum.de.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Biology I and GeoBio-Center (LMU), Division of Organismic Biology: Mycology, Ludwig-Maximilians-Universität München, Menzinger Str. 67, 80638, Munich</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bavière</region>
<region type="district" nuts="2">District de Haute-Bavière</region>
<settlement type="city">Munich</settlement>
</placeName>
<orgName type="university">Université Louis-et-Maximilien de Munich</orgName>
</affiliation>
</author>
<author>
<name sortKey="Raidl, Stefan" sort="Raidl, Stefan" uniqKey="Raidl S" first="Stefan" last="Raidl">Stefan Raidl</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biology I and GeoBio-Center (LMU), Division of Organismic Biology: Mycology, Ludwig-Maximilians-Universität München, Menzinger Str. 67, 80638, Munich, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Biology I and GeoBio-Center (LMU), Division of Organismic Biology: Mycology, Ludwig-Maximilians-Universität München, Menzinger Str. 67, 80638, Munich</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bavière</region>
<region type="district" nuts="2">District de Haute-Bavière</region>
<settlement type="city">Munich</settlement>
</placeName>
<orgName type="university">Université Louis-et-Maximilien de Munich</orgName>
</affiliation>
</author>
<author>
<name sortKey="Verma, Rita" sort="Verma, Rita" uniqKey="Verma R" first="Rita" last="Verma">Rita Verma</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biology I and GeoBio-Center (LMU), Division of Organismic Biology: Mycology, Ludwig-Maximilians-Universität München, Menzinger Str. 67, 80638, Munich, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Biology I and GeoBio-Center (LMU), Division of Organismic Biology: Mycology, Ludwig-Maximilians-Universität München, Menzinger Str. 67, 80638, Munich</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bavière</region>
<region type="district" nuts="2">District de Haute-Bavière</region>
<settlement type="city">Munich</settlement>
</placeName>
<orgName type="university">Université Louis-et-Maximilien de Munich</orgName>
</affiliation>
</author>
<author>
<name sortKey="Rodenkirchen, Hermann" sort="Rodenkirchen, Hermann" uniqKey="Rodenkirchen H" first="Hermann" last="Rodenkirchen">Hermann Rodenkirchen</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Ecology and Ecosystem Management, Forest Nutrition and Water Resources, Technische Universität München, Hans-Carl-von-Carlowitz-Platz 2, 85350, Freising, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Ecology and Ecosystem Management, Forest Nutrition and Water Resources, Technische Universität München, Hans-Carl-von-Carlowitz-Platz 2, 85350, Freising</wicri:regionArea>
<wicri:noRegion>85350, Freising</wicri:noRegion>
<orgName type="university">Université technique de Munich</orgName>
<placeName>
<settlement type="city">Munich</settlement>
<region type="land" nuts="1">Bavière</region>
<region type="district" nuts="2">District de Haute-Bavière</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gottlein, Axel" sort="Gottlein, Axel" uniqKey="Gottlein A" first="Axel" last="Göttlein">Axel Göttlein</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Ecology and Ecosystem Management, Forest Nutrition and Water Resources, Technische Universität München, Hans-Carl-von-Carlowitz-Platz 2, 85350, Freising, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Ecology and Ecosystem Management, Forest Nutrition and Water Resources, Technische Universität München, Hans-Carl-von-Carlowitz-Platz 2, 85350, Freising</wicri:regionArea>
<wicri:noRegion>85350, Freising</wicri:noRegion>
<orgName type="university">Université technique de Munich</orgName>
<placeName>
<settlement type="city">Munich</settlement>
<region type="land" nuts="1">Bavière</region>
<region type="district" nuts="2">District de Haute-Bavière</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Agerer, Reinhard" sort="Agerer, Reinhard" uniqKey="Agerer R" first="Reinhard" last="Agerer">Reinhard Agerer</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biology I and GeoBio-Center (LMU), Division of Organismic Biology: Mycology, Ludwig-Maximilians-Universität München, Menzinger Str. 67, 80638, Munich, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Biology I and GeoBio-Center (LMU), Division of Organismic Biology: Mycology, Ludwig-Maximilians-Universität München, Menzinger Str. 67, 80638, Munich</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bavière</region>
<region type="district" nuts="2">District de Haute-Bavière</region>
<settlement type="city">Munich</settlement>
</placeName>
<orgName type="university">Université Louis-et-Maximilien de Munich</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Mycorrhiza</title>
<idno type="eISSN">1432-1890</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Basidiomycota (growth & development)</term>
<term>Basidiomycota (metabolism)</term>
<term>Biomass (MeSH)</term>
<term>Carbon Dioxide (metabolism)</term>
<term>Mycorrhizae (growth & development)</term>
<term>Mycorrhizae (metabolism)</term>
<term>Nitrogen (metabolism)</term>
<term>Norway (MeSH)</term>
<term>Picea (growth & development)</term>
<term>Picea (metabolism)</term>
<term>Picea (microbiology)</term>
<term>Seedlings (growth & development)</term>
<term>Seedlings (metabolism)</term>
<term>Seedlings (microbiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Azote (métabolisme)</term>
<term>Basidiomycota (croissance et développement)</term>
<term>Basidiomycota (métabolisme)</term>
<term>Biomasse (MeSH)</term>
<term>Dioxyde de carbone (métabolisme)</term>
<term>Mycorhizes (croissance et développement)</term>
<term>Mycorhizes (métabolisme)</term>
<term>Norvège (MeSH)</term>
<term>Picea (croissance et développement)</term>
<term>Picea (microbiologie)</term>
<term>Picea (métabolisme)</term>
<term>Plant (croissance et développement)</term>
<term>Plant (microbiologie)</term>
<term>Plant (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carbon Dioxide</term>
<term>Nitrogen</term>
</keywords>
<keywords scheme="MESH" type="geographic" xml:lang="en">
<term>Norway</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Basidiomycota</term>
<term>Mycorhizes</term>
<term>Picea</term>
<term>Plant</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Basidiomycota</term>
<term>Mycorrhizae</term>
<term>Picea</term>
<term>Seedlings</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Basidiomycota</term>
<term>Mycorrhizae</term>
<term>Picea</term>
<term>Seedlings</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Picea</term>
<term>Plant</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Picea</term>
<term>Seedlings</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Azote</term>
<term>Basidiomycota</term>
<term>Dioxyde de carbone</term>
<term>Mycorhizes</term>
<term>Picea</term>
<term>Plant</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biomass</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Biomasse</term>
<term>Norvège</term>
</keywords>
<keywords scheme="Wicri" type="geographic" xml:lang="fr">
<term>Norvège</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Elevated tropospheric CO(2) concentrations may increase plant carbon fixation. In ectomycorrhizal trees, a considerable portion of the synthesized carbohydrates can be used to support the mutualistic fungal root partner which in turn can benefit the tree by increased nutrient supply. In this study, Norway spruce seedlings were inoculated with either Piloderma croceum (medium distance "fringe" exploration type) or Tomentellopsis submollis (medium distance "smooth" exploration type). We studied the impact of either species regarding fungal biomass production, seedling biomass, nutrient status and nutrient use efficiency in rhizotrons under ambient and twice-ambient CO(2) concentrations. A subset was amended with ammonium nitrate to prevent nitrogen imbalances expected under growth promotion by elevated CO(2). The two fungal species exhibited considerably different influences on growth, biomass allocation as well as nutrient uptake of spruce seedlings. P. croceum increased nutrient supply and promoted plant growth more strongly than T. submollis despite considerably higher carbon costs. In contrast, seedlings with T. submollis showed higher nutrient use efficiency, i.e. produced plant biomass per received unit of nutrient, particularly for P, K and Mg, thereby promoting shoot growth and reducing the root/shoot ratio. Under the given low soil nutrient availability, P. croceum proved to be a more favourable fungal partner for seedling development than T. submollis. Additionally, plant internal allocation of nutrients was differently influenced by the two ECM fungal species, particularly evident for P in shoots and for Ca in roots. Despite slightly increased ECM length and biomass production, neither of the two species had increased its capacity of nutrient uptake in proportion to the rise of CO(2). This lead to imbalances in nutritional status with reduced nutrient concentrations, particularly in seedlings with P. croceum. The beneficial effect of P. croceum thus diminished, although the nutrient status of its host plants was still above that of plants with T. submollis. We conclude that the imbalances of nutrient status in response to elevated CO(2) at early stages of plant development are likely to prove particularly severe at nutrient-poor soils as the increased growth of ECM cannot cover the enhanced nutrient demand. Hyphal length and biomass per unit of ectomycorrhizal length as determined for the first time for P. croceum amounted to 6.9 m cm(-1) and 6.0 μg cm(-1), respectively, across all treatments.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21107870</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>09</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1890</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>21</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2011</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Mycorrhiza</Title>
<ISOAbbreviation>Mycorrhiza</ISOAbbreviation>
</Journal>
<ArticleTitle>Effects of twice-ambient carbon dioxide and nitrogen amendment on biomass, nutrient contents and carbon costs of Norway spruce seedlings as influenced by mycorrhization with Piloderma croceum and Tomentellopsis submollis.</ArticleTitle>
<Pagination>
<MedlinePgn>375-391</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00572-010-0343-1</ELocationID>
<Abstract>
<AbstractText>Elevated tropospheric CO(2) concentrations may increase plant carbon fixation. In ectomycorrhizal trees, a considerable portion of the synthesized carbohydrates can be used to support the mutualistic fungal root partner which in turn can benefit the tree by increased nutrient supply. In this study, Norway spruce seedlings were inoculated with either Piloderma croceum (medium distance "fringe" exploration type) or Tomentellopsis submollis (medium distance "smooth" exploration type). We studied the impact of either species regarding fungal biomass production, seedling biomass, nutrient status and nutrient use efficiency in rhizotrons under ambient and twice-ambient CO(2) concentrations. A subset was amended with ammonium nitrate to prevent nitrogen imbalances expected under growth promotion by elevated CO(2). The two fungal species exhibited considerably different influences on growth, biomass allocation as well as nutrient uptake of spruce seedlings. P. croceum increased nutrient supply and promoted plant growth more strongly than T. submollis despite considerably higher carbon costs. In contrast, seedlings with T. submollis showed higher nutrient use efficiency, i.e. produced plant biomass per received unit of nutrient, particularly for P, K and Mg, thereby promoting shoot growth and reducing the root/shoot ratio. Under the given low soil nutrient availability, P. croceum proved to be a more favourable fungal partner for seedling development than T. submollis. Additionally, plant internal allocation of nutrients was differently influenced by the two ECM fungal species, particularly evident for P in shoots and for Ca in roots. Despite slightly increased ECM length and biomass production, neither of the two species had increased its capacity of nutrient uptake in proportion to the rise of CO(2). This lead to imbalances in nutritional status with reduced nutrient concentrations, particularly in seedlings with P. croceum. The beneficial effect of P. croceum thus diminished, although the nutrient status of its host plants was still above that of plants with T. submollis. We conclude that the imbalances of nutrient status in response to elevated CO(2) at early stages of plant development are likely to prove particularly severe at nutrient-poor soils as the increased growth of ECM cannot cover the enhanced nutrient demand. Hyphal length and biomass per unit of ectomycorrhizal length as determined for the first time for P. croceum amounted to 6.9 m cm(-1) and 6.0 μg cm(-1), respectively, across all treatments.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Weigt</LastName>
<ForeName>Rosemarie Barbara</ForeName>
<Initials>RB</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology I and GeoBio-Center (LMU), Division of Organismic Biology: Mycology, Ludwig-Maximilians-Universität München, Menzinger Str. 67, 80638, Munich, Germany. weigt@wzw.tum.de.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Raidl</LastName>
<ForeName>Stefan</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology I and GeoBio-Center (LMU), Division of Organismic Biology: Mycology, Ludwig-Maximilians-Universität München, Menzinger Str. 67, 80638, Munich, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Verma</LastName>
<ForeName>Rita</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology I and GeoBio-Center (LMU), Division of Organismic Biology: Mycology, Ludwig-Maximilians-Universität München, Menzinger Str. 67, 80638, Munich, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rodenkirchen</LastName>
<ForeName>Hermann</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Department of Ecology and Ecosystem Management, Forest Nutrition and Water Resources, Technische Universität München, Hans-Carl-von-Carlowitz-Platz 2, 85350, Freising, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Göttlein</LastName>
<ForeName>Axel</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Ecology and Ecosystem Management, Forest Nutrition and Water Resources, Technische Universität München, Hans-Carl-von-Carlowitz-Platz 2, 85350, Freising, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Agerer</LastName>
<ForeName>Reinhard</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology I and GeoBio-Center (LMU), Division of Organismic Biology: Mycology, Ludwig-Maximilians-Universität München, Menzinger Str. 67, 80638, Munich, Germany.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>11</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Mycorrhiza</MedlineTA>
<NlmUniqueID>100955036</NlmUniqueID>
<ISSNLinking>0940-6360</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>142M471B3J</RegistryNumber>
<NameOfSubstance UI="D002245">Carbon Dioxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N762921K75</RegistryNumber>
<NameOfSubstance UI="D009584">Nitrogen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001487" MajorTopicYN="N">Basidiomycota</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018533" MajorTopicYN="N">Biomass</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002245" MajorTopicYN="N">Carbon Dioxide</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009584" MajorTopicYN="N">Nitrogen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009664" MajorTopicYN="N" Type="Geographic">Norway</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D028222" MajorTopicYN="N">Picea</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D036226" MajorTopicYN="N">Seedlings</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2010</Year>
<Month>05</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2010</Year>
<Month>10</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>11</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>11</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>9</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21107870</ArticleId>
<ArticleId IdType="doi">10.1007/s00572-010-0343-1</ArticleId>
<ArticleId IdType="pii">10.1007/s00572-010-0343-1</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Microb Ecol. 2001 Aug;42(2):126-135</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12024276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;170(2):345-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16608459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2000 May;20(9):599-606</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12651424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 1996 Aug;47 Spec No:1255-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21245257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2005 Jan;15(1):25-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14750001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Apr;186(2):346-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20015070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;175(1):11-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17547663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1986 Sep;82(1):83-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16665028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 1969 Apr;59(4):411-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5811914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2007 Jul;31(4):388-406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17466031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2003 Jun;13(3):159-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12836084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9689-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15210962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2007 Jul;9(4):545-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17301933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Jan;185(2):514-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19895671</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1997 May;17(5):347-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14759859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2006 Sep;87(9):2278-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16995628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;176(1):164-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17803647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1983 Apr;45(4):1188-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16346263</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Sep;167(3):859-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16101922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1987 Sep;3(3):203-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14975813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2001 Feb;21(2-3):93-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11303653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2003 Sep;8(9):407-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13678905</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
<region>
<li>Bavière</li>
<li>District de Haute-Bavière</li>
</region>
<settlement>
<li>Munich</li>
</settlement>
<orgName>
<li>Université Louis-et-Maximilien de Munich</li>
<li>Université technique de Munich</li>
</orgName>
</list>
<tree>
<country name="Allemagne">
<region name="Bavière">
<name sortKey="Weigt, Rosemarie Barbara" sort="Weigt, Rosemarie Barbara" uniqKey="Weigt R" first="Rosemarie Barbara" last="Weigt">Rosemarie Barbara Weigt</name>
</region>
<name sortKey="Agerer, Reinhard" sort="Agerer, Reinhard" uniqKey="Agerer R" first="Reinhard" last="Agerer">Reinhard Agerer</name>
<name sortKey="Gottlein, Axel" sort="Gottlein, Axel" uniqKey="Gottlein A" first="Axel" last="Göttlein">Axel Göttlein</name>
<name sortKey="Raidl, Stefan" sort="Raidl, Stefan" uniqKey="Raidl S" first="Stefan" last="Raidl">Stefan Raidl</name>
<name sortKey="Rodenkirchen, Hermann" sort="Rodenkirchen, Hermann" uniqKey="Rodenkirchen H" first="Hermann" last="Rodenkirchen">Hermann Rodenkirchen</name>
<name sortKey="Verma, Rita" sort="Verma, Rita" uniqKey="Verma R" first="Rita" last="Verma">Rita Verma</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002435 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002435 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21107870
   |texte=   Effects of twice-ambient carbon dioxide and nitrogen amendment on biomass, nutrient contents and carbon costs of Norway spruce seedlings as influenced by mycorrhization with Piloderma croceum and Tomentellopsis submollis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21107870" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020